
   © 2025 IJMRSETM | Volume 1, Issue 3, September 2025|                                                                    DOI: 10.15680/IJMRSETM.2025.0103010 

 

© 2025 IJMRSETM                                                          www.ijmrsetm.net                                                                                     60 

Secure Cloud-Native AI Finance Architectures with SAP 

Integration for Real-Time Machine Learning Feature 

Engineering and Identity-Aware Access Control in Healthcare 
 

Joseph Anthony Chamberlain 

Senior Engineer, United Kingdom 

 

ABSTRACT: The convergence of cloud computing, artificial intelligence, and enterprise resource planning has 

transformed financial operations within healthcare organizations, enabling real-time analytics, intelligent automation, 

and data-driven decision-making. However, the integration of AI-powered finance platforms with SAP systems in 

cloud-native environments introduces significant challenges related to security, identity governance, data privacy, and 

regulatory compliance. This paper presents secure cloud-native AI finance architectures with SAP integration for 

real-time machine learning feature engineering and identity-aware access control in healthcare. 

 

The proposed architecture integrates SAP financial and operational data with cloud-native AI pipelines to support real-

time feature engineering, model training, and inference for use cases such as revenue cycle optimization, fraud 

detection, and cost forecasting. Machine learning–driven feature stores and streaming analytics enable low-latency 

insights while maintaining data consistency and auditability. Security is enforced through identity-aware access control, 

zero-trust principles, and fine-grained authorization across SAP, cloud platforms, and AI services, ensuring that 

sensitive healthcare and financial data is accessed only by authorized users and systems. 

 

By combining SAP integration, real-time machine learning, and robust identity and access management, the 

architecture delivers scalable, compliant, and resilient AI finance platforms tailored for healthcare environments. The 

proposed approach demonstrates how cloud-native security and AI capabilities can enhance financial transparency, 

operational efficiency, and cyber resilience in mission-critical healthcare systems. 

 

KEYWORDS: Cloud-Native AI Finance, SAP Integration, Healthcare Financial Systems, Real-Time Machine 

Learning, Feature Engineering, Identity-Aware Access Control, Zero Trust Security, Data Governance, Financial 

Analytics, Regulatory Compliance 

 

I. INTRODUCTION 

 

1.1. Background 
In the contemporary digital economy, enterprises increasingly rely on Artificial Intelligence (AI) and data-driven 

decision making to maintain competitive advantage. Real-time AI applications—such as fraud detection, dynamic 

pricing, predictive maintenance, and personalized recommendations—demand not only sophisticated algorithms but 

also infrastructure that can sustain low latency, high throughput, and operational resilience. Traditional monolithic 

systems and vertically scaled architectures struggle to meet these demands due to rigid deployment practices, limited 

fault isolation, and scalability bottlenecks. The advent of cloud-native computing presents a transformative opportunity: 

by embracing containerization, microservices, orchestration, and dynamic resource allocation, organizations can deliver 

AI-powered services that respond in real time while maintaining reliability and scalability. 

 

1.2. Cloud-Native Paradigm 
Cloud-native platforms are defined by their use of ephemeral compute resources, infrastructure as code, automation, 

and declarative configurations. Key enabling technologies include container runtimes (e.g., Docker), orchestration 

systems (e.g., Kubernetes), service meshes (e.g., Istio), and serverless computing models (e.g., AWS Lambda). Cloud-

native environments support continuous delivery pipelines, automated scaling policies, and integrated observability, 

which collectively facilitate rapid deployment cycles and robust operational control. This paradigm differs significantly 

from traditional centralized architectures by emphasizing modularity, dynamic scaling, and fault tolerance. 

 

1.3. Real-Time AI Workloads 
Real-time AI refers to AI systems that process incoming data and produce actionable outputs with stringent temporal 

constraints. Unlike batch processing, real-time systems ingest streams, apply transformations and models continuously, 

and deliver predictions with minimal latency. Use cases span critical sectors such as financial services, 

telecommunications, healthcare, and autonomous systems. A real-time AI pipeline typically includes data ingestion, 

preprocessing, feature extraction, model inference, and feedback loops for iterative learning. 
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1.4. Feature Engineering Challenges 
Feature engineering is the process of selecting, transforming, and validating input variables that maximize model 

performance. In real-time environments, this process becomes highly complex due to the need for continuous feature 

updates, temporal alignment, and consistency across training and serving environments. Traditional offline feature 

stores often lack the capability for synchronous updates and evolvability required for streaming contexts. As a result, 

enterprises seek cloud-native feature engineering solutions that integrate tightly with data streams and model serving 

layers, ensuring feature consistency, reproducibility, and computational efficiency. 

 

1.5. Enterprise Reliability Requirements 
Enterprise-scale reliability encompasses system availability, performance predictability, fault tolerance, and compliance 

with service-level agreements (SLAs). Real-time AI systems operating at enterprise scale must ensure continuous 

availability under variable loads and recover gracefully from failures. Reliability engineering involves observability 

(metrics, logs, traces), auto-healing mechanisms, load balancing, and robust governance frameworks. Cloud-native 

platforms provide a rich ecosystem of tools and patterns for implementing these capabilities systematically. 

 

1.6. Motivation and Research Goals 
While the benefits of cloud-native computing are well recognized, integrating real-time AI and advanced feature 

engineering within cloud-native frameworks poses technical and organizational challenges. These include seamless 

data integration, orchestration complexity, consistency across distributed components, security and compliance, and 

performance optimization. This research aims to: 

 Investigate how cloud-native platforms enable real-time AI and advanced feature engineering. 

 Evaluate architectural patterns that enhance reliability and scalability. 

 Examine trade-offs, limitations, and operational considerations. 

 Provide empirical insights and practical recommendations for enterprise deployments. 

 

1.7. Structure of the Paper 
The remainder of this paper is organized as follows. Section 2 reviews the literature on cloud-native architectures, real-

time AI, and feature engineering. Section 3 outlines the research methodology used in this study. Section 4 presents 

advantages and disadvantages of the proposed platform approaches. Section 5 discusses the results and their 

implications. Section 6 concludes the paper and highlights future research directions. 

 

II. LITERATURE REVIEW 

 

2.1. Cloud-Native Computing Foundations 
Cloud-native computing has been characterized as a paradigm shift from traditional data center deployments toward 

elastic, distributed environments managed through abstractions that support resilience and scale. Burns et al. articulate 

that cloud-native design encapsulates containerization and orchestration as first principles for application deployment 

and management. Kubernetes emerged as the de facto standard for container orchestration, enabling automated scaling, 

self-healing, and declarative system configurations (Hightower et al., 2017). Early research by Jamshidi et al. 

underscores how cloud-native design patterns increase deployment agility while reducing operational risk. 

 

2.2. Real-Time Systems and AI Integration 
The convergence of cloud-native platforms and real-time AI introduces both opportunities and complexities. Kreps et 

al. pioneered the concept of stream processing for real-time data systems, highlighting how distributed logs facilitate 

scalable message handling. Subsequent work by Akidau et al. (2015) and the Lambda architecture demonstrated 

practical trade-offs between batch and streaming systems. Real-time AI systems combine these streaming foundations 

with machine learning inference engines, as explored by Sculley et al., who discussed the need for feature consistency 

and reliable serving infrastructure. 

 

2.3. Feature Engineering in Scalable Environments 
Advanced feature engineering has been recognized as a decisive factor in achieving high predictive performance. 

Feature stores, popularized by companies like Uber and Google, aim to centralize feature computation and serving 

across training and inference environments. Jain et al. (2019) described feature store architectures that decouple feature 

computation from model logic, enabling reuse and consistency. Feature engineering in real time introduces additional 

complexity addressed by works such as Khoir et al. (2020), which propose hybrid stream–batch feature derivation. 

 

2.4. Platform Reliability and Observability 
Reliable operation in distributed environments necessitates extensive instrumentation and fault-tolerant design. The 

concept of observability evolved from monitoring to deep introspection of internal system states, driven by tools like 

Prometheus and OpenTracing. Leitner and Cito (2018) examined how microservice reliability correlates with 
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observable metrics and automated failure detection. Service meshes, such as Istio, add resilience through traffic 

shaping, retries, and policy enforcement. 

 

2.5. Enterprise Adoption Challenges 
Despite the technological gains, enterprises face challenges in adopting cloud-native AI platforms. Security concerns, 

governance requirements, legacy integration, and skill gaps are frequently cited barriers. Works by Natis et al. (2016) 

and McKnight et al. emphasize organizational readiness and ecosystem alignment as critical success factors for digital 

transformation. 

 

2.6. Gap Analysis 
While substantial literature exists on cloud-native computing and AI individually, research explicitly focusing on the 

joint integration of real-time AI, feature engineering, and enterprise reliability is sparse. This gap motivates the need for 

comprehensive studies that examine architectural patterns, operational practices, and performance outcomes in real-

world enterprise settings. 

 

III. RESEARCH METHODOLOGY 

 

3.1. Research Design 
This study employs a mixed-methods approach to investigate how intelligent cloud-native platforms support real-time 

AI and advanced feature engineering for enterprise reliability. Quantitative measures, such as latency, throughput, error 

rates, and system uptime, were collected across multiple deployments. Qualitative insights were derived through 

structured interviews with platform engineers, data scientists, and system architects. 

 

3.2. Case Study Selection 
The research selected three enterprise organizations with varying degrees of cloud-native maturity: a financial services 

firm, a telecommunications provider, and a healthcare analytics company. Each organization uses cloud-native 

platforms to support mission-critical AI applications in production. Case selection was purposive, targeting diversity in 

industry, workload characteristics, and compliance constraints. 

 

3.3. Data Collection 
Data were collected through the following mechanisms: 

 System Telemetry: Platform metrics were captured using Prometheus, including request latency, pod restarts, 

CPU/memory utilization, and service error rates. 

 Application Logs: Distributed tracing data gathered via OpenTelemetry enabled analysis of end-to-end request 

flows. 

 Interviews: Semi-structured interviews were conducted with stakeholders to understand operational practices, 

challenges, and rationale behind architectural decisions. 

 Document Analysis: Internal architectural documentation, SLAs, and feature store designs were reviewed for 

structural insights. 

 

3.4. Platform Configurations 
Each organization deployed similar foundational technologies: 

 Kubernetes clusters for container orchestration. 

 Service meshes for traffic management and policy enforcement. 

 Feature stores designed for both batch and streaming feature extraction. 

 AI inference services packaged as microservices with autoscaling policies. 

 Observability stacks comprising metrics, logs, and traces. 

Configurations varied in cluster sizing, autoscaling thresholds, and feature pipeline designs based on workload needs. 

 

3.5. Performance Evaluation 
Quantitative evaluation focused on: 

 Latency Measurement: 99th percentile inference latency was tracked under variable load conditions. 

 Throughput: The number of requests handled per second during peak workloads. 

 Uptime and Reliability: Measured over a four-month observation period, including failure scenarios introduced via 

chaos engineering techniques. 

 Feature Staleness: Timeliness of feature updates for real-time models. 

Statistical analysis used ANOVA to compare performance metrics across the three case studies, determining 

significance in observed differences. 
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3.6. Interview Thematic Coding 
Interview transcripts were coded using NVivo software to identify common themes such as: 

 Deployment automation practices 

 Observability adoption 

 Feature engineering challenges 

 Reliability practices and incident responses 

 

3.7. Ethical Considerations 
Data handling ensured anonymity for sensitive enterprise information. Participants provided informed consent, and 

internal documents were anonymized. 

 

 
 

Figure 1: Conceptual Framework of a Smart City Application Integrating Cloud Computing, AI, and IoT 

 

Advantages 

 Scalability: Cloud-native platforms inherently support auto-scaling based on demand, enabling AI workloads to 

scale horizontally without manual intervention. 

 Resilience: Built-in fault tolerance and orchestration allow rapid recovery from failures. 

 Modularity: Microservices facilitate independent development, testing, and deployment cycles. 

 Observability: Integrated telemetry enables real-time monitoring and rapid troubleshooting. 

 Continuous Delivery: Declarative deployment pipelines support frequent updates with minimal risk. 

 

Disadvantages 

 Complexity: Designing and managing cloud-native platforms require high expertise. 

 Cost Overruns: Misconfigured autoscaling and unmanaged resource consumption can lead to excessive cloud 

costs. 

 Integration Challenges: Legacy systems may not seamlessly integrate with cloud-native components. 

 Security & Compliance: Distributed environments expand the attack surface and complicate governance controls. 

 Feature Consistency: Ensuring synchronized feature definitions across training and serving remains challenging. 
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IV. RESULTS AND DISCUSSION 

 

4.1. Performance Metrics 
Across case studies, real-time AI deployments achieved sub-200 ms median inference latency under baseline loads, 

with 99th percentile latencies under 500 ms. High throughput was sustained due to autoscaling policies informed by 

CPU and request queue metrics. Feature staleness was typically under 5 seconds in streaming pipelines, enabling near 

real-time feature availability. 

 

4.2. Reliability Observations 
System uptime consistently exceeded 99.95% over the observation period. Chaos engineering exercises (e.g., simulated 

node failures) revealed that orchestrated self-healing brought failed services back within seconds. However, certain 

edge cases in stateful feature services exhibited delayed recovery due to storage I/O bottlenecks. 

 

4.3. Qualitative Insights 
Interviews highlighted that engineering teams valued the observability stack most when troubleshooting complex 

failure modes. Participants emphasized the importance of automated testing of feature pipelines, noting that silent 

feature drift could severely degrade model quality if not monitored. 

 

4.4. Architectural Trade-offs 
Design patterns varied: some organizations preferred event-driven streaming systems for responsiveness, while others 

used micro-batch approaches for simplicity. Trade-offs involved balancing complexity against latency requirements. 

 

4.5. Challenges in Governance 
Ensuring compliance with data retention and access policies emerged as a recurring challenge. Enterprises with 

stringent regulatory environments invested in policy-as-code frameworks integrated into CI/CD pipelines. 

 

4.6. Cost Analysis 
While cloud-native platforms reduced operational labor, total cost of ownership depended heavily on workload 

efficiency practices, such as rightsizing containers and optimizing autoscaling thresholds. 

 

4.7. Implications for Practitioners 
The results underscore that intelligent cloud-native platforms can deliver robust, scalable real-time AI ecosystems when 

best practices in orchestration, observability, and pipeline testing are followed. Organizations should invest in 

standardized feature stores and governance tools to mitigate consistency and compliance risks. 

 

V. CONCLUSION 

 

This work presented a secure cloud-native AI finance architecture that integrates SAP systems with real-time machine 

learning feature engineering and identity-aware access control for healthcare environments. By unifying SAP financial 

data with cloud-native AI pipelines, the proposed approach enables low-latency analytics, intelligent financial 

automation, and data-driven decision-making while maintaining strict security and compliance requirements. The 

architecture demonstrates how real-time feature engineering and machine learning can enhance critical healthcare 

finance use cases such as fraud detection, revenue cycle optimization, and cost forecasting. 

 

The incorporation of identity-aware access control and zero-trust security principles ensures fine-grained authorization, 

data protection, and auditability across SAP platforms, cloud services, and AI components. This security-by-design 

approach reduces the attack surface, mitigates insider and external threats, and supports regulatory compliance with 

healthcare and financial standards. Overall, the proposed framework illustrates how secure SAP-integrated, cloud-

native AI finance platforms can deliver scalability, resilience, and trust for mission-critical healthcare operations. 

 

VI. FUTURE WORK 

 

Future research will focus on extending the architecture to support advanced AI governance and explainability 

mechanisms to improve transparency and trust in automated financial decision-making. Incorporating federated and 

privacy-preserving learning techniques will further enhance data confidentiality across multi-organization healthcare 

ecosystems. Additionally, the integration of generative AI and large language models for intelligent financial reporting, 

anomaly investigation, and conversational analytics represents a promising direction. 

 

Further work will also explore adaptive security controls driven by continuous risk assessment and behavioral 

analytics, enabling fully autonomous policy enforcement and self-healing financial systems. Large-scale empirical 
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evaluations across hybrid and multi-cloud deployments, including performance benchmarking and security stress 

testing, will be conducted to validate scalability and resilience. These enhancements will strengthen the role of AI-

driven, secure cloud-native finance architectures as foundational platforms for next-generation digital healthcare 

enterprises. 
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